Gdy pomnożysz liczbę całkowitą (nie ułamek) przez siebie, a następnie przez siebie ponownie, wynik jest liczbą sześcienną. Na przykład 3 x 3 x 3 = 27.
Łatwym sposobem zapisu 3 sześciennych jest 33. Oznacza to trzy pomnożone przez siebie trzy razy.
Najłatwiejszym sposobem wykonania tego obliczenia jest wykonanie pierwszego mnożenia (3×3), a następnie pomnożenie odpowiedzi przez tę samą liczbę, od której zaczęliśmy; 3 x 3 x 3 = 9 x 3 = 27.
Wszystko, czego potrzebujesz? Poćwiczmy z arkuszami EdPlace
Learning Cube Numbers
Liczby sześcienne mogą być trochę bardziej mylące niż liczby kwadratowe, po prostu z powodu dodatkowego mnożenia. Zasadniczo, obliczasz kształt 3D zamiast płaskiego.
Tutaj jest płaski (lub 2D) 4 x 4 kwadrat:
Aby obliczyć liczbę bloków (liczba podniesiona do kwadratu) po prostu pomnożylibyśmy 4 x 4 lub 42, co równa się 16.
Tutaj jest trójwymiarowa kostka 4 x 4:
Aby obliczyć liczbę klocków (liczbę sześcienną) tym razem pomnożylibyśmy 4 x 4 x 4 lub 43, co równa się 64.
W drugim semestrze nie trzeba uczyć się liczb sześciennych na pamięć, ale trzeba mieć podstawową wiedzę o tym, czym są i jak je obliczać. Często dzieci otrzymują wzór liczb, takich jak niższe numery sześcianu i mogą być poproszone o próbę rozpracowania wzoru.
Tutaj jest lista liczb sześciennych do 12×12:
= 13 = 1 × 1 x 1 = 1 2 Sześcian = 23 = 2 × 2 x 2 = 8 3 Sześcian = = > = 3 x 3 x 3 = 27 4 Sześcian = 43 = 4 × 4 × 4 = 64 5 Sześcian = 53 = 5 × 5 x 5 = 125 6 Sześcian = 63 = 6 × 6 x 6 = = 216 7 Sześcienny = 73 = 7 × 7 × 7 = 343 8 Sześcienny = = 83 = 8 × 8 × 8 = 512 9 Sześcian = 93 = = 9 × 9 x 9 = 729 10 Sześcienna = 10 = 10 × 10 x 10 = 1,000 11 Sześcian = 113 = 11 × 11 × 11 = 1,331 12 Sześcian = 123 = 12 × 12 × 12 = 1,728Znajdowanie sześcianu liczby ujemnej.
Sześcian liczby ujemnej zawsze będzie ujemny, tak jak sześcian liczby dodatniej zawsze będzie dodatni.
Na przykład; -53 = -5 x -5 x- -5 = (25 x -5) = -125.
Znajdowanie sześcianu liczby dziesiętnej.
Tak jak w przypadku liczb całkowitych (integer), łatwo jest złożyć w sześcian również liczbę dziesiętną. Nie martw się jednak, nie będziesz musiał ich zapamiętywać na drugim etapie edukacyjnym (ani prawdopodobnie nawet obliczać)!
1.23 Sześcienny | = | 1,233 | = | 1,23 × 1,23 × 1,23 | = | 1,860867 | |
2.56 Cubed | = | 2.563 | = | 2.56 × 2.56 x 2.56 | = | 16.777216 |
Arkusze ćwiczeń i praktyka
Tutaj są niektóre arkusze ukierunkowane szczególnie na zapoznanie się z liczbami sześciennymi i ćwiczenie swoich umiejętności.
Rok 6 – Rysowanie kropek na kostkach siatki
Rok 8 – Poznaj swoje kwadraty i swoje kostki
Rok 8 – Liczby sześcienne i pierwiastki sześcienne
Rok 8 – Ćwicz znajdowanie sześcianów i pierwiastków sześciennych na kalkulatorze
Dalsza nauka
Jeśli liczby sześcienne i łamigłówki są dla Ciebie i naprawdę chcesz rzucić sobie wyzwanie, dlaczego nie zajrzeć na stronę BBC Bitesize lub nie spróbować niektórych z łamigłówek i problemów ułożonych przez zespół NRich na Uniwersytecie w Cambridge?
https://nrich.maths.org/public/leg.php?code=-308
http://www.bbc.co.uk/guides/z2ndsrd